PSO Based State Feedback Controller Design for SVC to Enhance the Stability of Power System
نویسندگان
چکیده
SVC is one of the most significant devices in FACTS technology, which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and, etc. designing a proper controller is effective in operation of SVC. In this paper, a simplified analysis of the effect of a SVC on the stability of a Single Machine Infinite Bus (SMIB) system is presented. The SVC which is located at the terminal of the generator has the state feedback controller in which the coefficients of state feedback are optimized by the Particle Swarm Optimization (PSO) algorithm in order to damp the Low Frequency Oscillations (LFO). The equations that describe the proposed system have been linearized, and then the optimum state feedback controller has been designed for SVC which its optimal coefficients have been earned by PSO algorithm. The system with proposed controller has been simulated for a special disturbance in nominal loading condition. Thereafter, for three states viz light loading condition, normal loading condition and heavy loading condition, to show the robustness of the proposed controller, the previous disturbance has been applied again. Then the dynamic responses of the generator have been presented. The simulation results showed that the system composed with proposed controller has a suitable operation in fast damping of oscillations of the power system. to ensure stability and tracking. Simulations is carried out to verify the theoretical results.
منابع مشابه
Controller Design of SSSC for power System Stability Enhancement
In this paper, a novel method is developed for designing the output feedback controller for Static Synchronous Series Compensator (SSSC). In the proposed method, the problem of selecting the output feedback gains for the SSSC controllers is changed into an optimization problem with a time domain-based objective function.Then, it is solved by using the particle swarm optimization (PSO) algorithm...
متن کاملController Design of SSSC for power System Stability Enhancement
In this paper, a novel method is developed for designing the output feedback controller for Static Synchronous Series Compensator (SSSC). In the proposed method, the problem of selecting the output feedback gains for the SSSC controllers is changed into an optimization problem with a time domain-based objective function.Then, it is solved by using the particle swarm optimization (PSO) algorithm...
متن کاملA PSO-Based Static Synchronous Compensator Controller for Power System Stability Enhancement
In this paper Power system stability enhancement through static synchronous compensator (STATCOM)based controller is investigated. The potential of the STATCOM supplementary controllers to enhance thedynamic stability is evaluated. The design problem of STATCOM based damping controller is formulatedas an optimization problem according to the eigenvalue based objective function that is solved by...
متن کاملOptimal Design of UPFC Output Feed Back Controller for Power System Stability Enhancement by Hybrid PSO and GSA
In this paper, the optimal design of supplementary controller parameters of a unified powerflow controller(UPFC) for damping low-frequency oscillations in a weakly connected systemis investigated. The individual design of the UPFC controller, using hybrid particle swarmoptimization and gravitational search algorithm (PSOGSA)technique under 3 loadingoperating conditions, is discussed. The effect...
متن کاملFACTS Control Parameters Identification for Enhancement of Power System Stability
The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012